首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9239篇
  免费   894篇
  国内免费   768篇
  2023年   99篇
  2022年   127篇
  2021年   432篇
  2020年   298篇
  2019年   415篇
  2018年   409篇
  2017年   299篇
  2016年   409篇
  2015年   597篇
  2014年   751篇
  2013年   738篇
  2012年   869篇
  2011年   750篇
  2010年   461篇
  2009年   420篇
  2008年   401篇
  2007年   410篇
  2006年   350篇
  2005年   294篇
  2004年   243篇
  2003年   256篇
  2002年   229篇
  2001年   202篇
  2000年   187篇
  1999年   192篇
  1998年   102篇
  1997年   99篇
  1996年   104篇
  1995年   76篇
  1994年   82篇
  1993年   55篇
  1992年   81篇
  1991年   71篇
  1990年   60篇
  1989年   62篇
  1988年   47篇
  1987年   40篇
  1986年   18篇
  1985年   29篇
  1984年   12篇
  1983年   23篇
  1982年   14篇
  1981年   12篇
  1980年   7篇
  1979年   16篇
  1978年   7篇
  1976年   6篇
  1975年   5篇
  1973年   9篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
31.
The native serine protease proteinase K binds two calcium cations. It has been reported that Ca2+ removal decreased the enzyme’s thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca2+-bound and Ca2+-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca2+ sites. Although Ca2+ removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca2+, the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca2+ removal, but also complement the experimentally determined structural and biochemical data.  相似文献   
32.
In this study, replacement of dominant populations (Phragmites australis and Phalaris arundinacea) in the plant community succession process in the Zhenjiang Waterfront Wetland was approached from three aspects: growth, photosynthesis, and specific competitive characteristics. The productivity of Phragmites, based on intrinsic rate of increase and environmental carrying capacity of the several chosen growth indices (plant length, sheath height, and biomass), was significantly higher than that of Phalaris. Phragmites had a higher photosynthetic rate than Phalaris. However, Phalaris had a markedly lower light compensation point, which suggested that it was capable of better utilization of weak light. This possibly might account for its survival beneath Phragmites. At three different coverage gradients, the relative yield total was greater than 1, indicating a certain degree of complementary resource utilization via niche separation between both species. Significant differences in the competition ratio of both species indicated a superiority of Phragmites over Phalaris in terms of competitive capability. Thus, the Phragmites population tended to exclude the Phalaris population and became the mono-dominant population in the community succession process. For Phalaris, traits such as its better utilization of weak light, its complementary resource utilization, and a partial separation of growth period compared to Phragmites prevented complete replacement of its population to some degree. In this particular study area in the Zhenjiang Waterfront Wetland, the hydrological conditions of the river beach determined by its elevation possibly acted as the dominant regulator of the plant succession process.  相似文献   
33.
Applied Microbiology and Biotechnology - Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases...  相似文献   
34.
Imputation of missing genotypes, in particular from low density to high density, is an important issue in genomic selection and genome‐wide association studies. Given the marker densities, the most important factors affecting imputation accuracy are the size of the reference population and the relationship between individuals in the reference (genotyped with high‐density panel) and study (genotyped with low‐density panel) populations. In this study, we investigated the imputation accuracies when the reference population (genotyped with Illumina BovineSNP50 SNP panel) contained sires, halfsibs, or both sires and halfsibs of the individuals in the study population (genotyped with Illumina BovineLD SNP panel) using three imputation programs (fimpute v2.2, findhap v2, and beagle v3.3.2). Two criteria, correlation between true and imputed genotypes and missing rate after imputation, were used to evaluate the performance of the three programs in different scenarios. Our results showed that fimpute performed the best in all cases, with correlations from 0.921 to 0.978 when imputing from sires to their daughters or between halfsibs. In general, the accuracies of imputing between halfsibs or from sires to their daughters were higher than were those imputing between non‐halfsibs or from sires to non‐daughters. Including both sires and halfsibs in the reference population did not improve the imputation performance in comparison with when only including halfsibs in the reference population for all the three programs.  相似文献   
35.
C. Zhu  J. Tong  X. Yu  W. Guo  X. Wang  H. Liu  X. Feng  Y. Sun  L. Liu  B. Fu 《Animal genetics》2014,45(5):699-708
Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second‐generation genetic linkage map was constructed for bighead carp through a pseudo‐testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non‐normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two‐tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well‐defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker‐assisted breeding in bighead carp.  相似文献   
36.
37.
38.
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. J. Morphol. 277:556–564, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号